Skip to contents

Dendrograms for multiple samples/groups clustering.

Usage

dendro_plot(
  data,
  dist_method = "euclidean",
  hc_method = "ward.D2",
  tree_type = "rectangle",
  k_num = 5,
  palette = "npg",
  color_labels_by_k = TRUE,
  horiz = FALSE,
  label_size = 1,
  line_width = 1,
  rect = TRUE,
  rect_fill = TRUE,
  xlab = "Samples",
  ylab = "Height",
  ggTheme = "theme_light"
)

Arguments

data

Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples).

dist_method

Character: distance measure method. Default: "euclidean", options: "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".

hc_method

Character: hierarchical clustering method. Default: "ward.D2", options: "ward.D", "ward.D2", "single", "complete","average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

tree_type

Character: plot tree type. Default: "rectangle", options: "rectangle", "circular", "phylogenic".

k_num

Numeric: the number of groups for cutting the tree. Default: 3.

palette

Character: color palette used for the group. Default: "npg", options: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".

color_labels_by_k

Logical: labels colored by group. Default: TRUE, options: TRUE or FALSE.

horiz

Logical: horizontal dendrogram. Default: FALSE, options: TRUE or FALSE.

label_size

Numeric: tree label size. Default: 0.8, min: 0.

line_width

Numeric: branches and rectangle line width. Default: 0.7, min: 0.

rect

Logical: add a rectangle around groups. Default: TRUE, options: TRUE or FALSE.

rect_fill

Logical: fill the rectangle. Default: TRUE, options: TRUE or FALSE.

xlab

Character: title of the xlab. Default: "".

ylab

Character: title of the ylab. Default: "Height".

ggTheme

Character: ggplot2 theme. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void".

Value

Plot: dendrogram for multiple samples clustering.

Author

wei dong

Examples

# 1. Library TOmicsVis package
library(TOmicsVis)

# 2. Use example dataset gene_expression
data(gene_expression)
head(gene_expression)
#>              Genes   CT_1   CT_2   CT_3 LT20_1 LT20_2 LT20_3 LT15_1 LT15_2
#> 1     transcript_0 655.78 631.08 669.89 654.21 402.56 447.09 510.08 442.22
#> 2     transcript_1  92.72 112.26 150.30  88.35  76.35  94.55 120.24  80.89
#> 3    transcript_10  21.74  31.11  22.58  15.09  13.67  13.24  12.48   7.53
#> 4   transcript_100   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00
#> 5  transcript_1000   0.00  14.15  36.01   0.00   0.00 193.59 208.45   0.00
#> 6 transcript_10000  89.18 158.04  86.28  82.97 117.78 102.24 129.61 112.73
#>   LT15_3 LT12_1 LT12_2 LT12_3 LT12_6_1 LT12_6_2 LT12_6_3
#> 1 399.82 483.30 437.89 444.06   405.43   416.63   464.75
#> 2  73.94  96.25  82.62  85.48    65.12    61.94    73.44
#> 3  13.35  11.16  11.36   6.96     7.82     4.01    10.02
#> 4   0.00   0.00   0.00   0.00     0.00     0.00     0.00
#> 5 232.40 148.58   0.00 181.61     0.02    12.18     0.00
#> 6  85.70  80.89 124.11 115.25   113.87   107.69   119.83

# 3. Default parameters
dendro_plot(gene_expression)
#> Registered S3 method overwritten by 'dendextend':
#>   method     from 
#>   rev.hclust vegan


# 4. Set palette = "aaas"
dendro_plot(gene_expression, palette = "aaas")


# 5. Set tree_type = "circular"
dendro_plot(gene_expression, tree_type = "circular")