Skip to contents

GO enrichment analysis and stat plot (None/Exist Reference Genome).

Usage

go_enrich_stat(
  go_anno,
  degs_list,
  padjust_method = "fdr",
  pvalue_cutoff = 0.05,
  qvalue_cutoff = 0.05,
  max_go_item = 15,
  strip_fill = "#CDCDCD",
  xtext_angle = 45,
  sci_fill_color = "Sci_AAAS",
  sci_fill_alpha = 0.8,
  ggTheme = "theme_light"
)

Arguments

go_anno

Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway).

degs_list

Dataframe: degs list.

padjust_method

Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

pvalue_cutoff

Numeric: P-value cutoff. Recommend: small than 0.05.

qvalue_cutoff

Numeric: Q-value cutoff. Recommend: small than 0.05.

max_go_item

Numeric: max BP/CC/MF terms. Default: 15, min: 1, max: NULL.

strip_fill

Character: strip fill color (color name or hex value). Default: "#CDCDCD".

xtext_angle

Numeric: x axis texts angle. Default: 45, min: 0, max: 360.

sci_fill_color

Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material".

sci_fill_alpha

Numeric: ggsci fill color alpha. Default: 0.80, min: 0.00, max: 1.00.

ggTheme

Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void"

Value

Plot: GO enrichment analysis and stat plot (None/Exist Reference Genome).

Author

benben-miao

Examples

# 1. Library TOmicsVis package
library(TOmicsVis)

# 2. Use example dataset
data(gene_go_kegg)
head(gene_go_kegg)
#>        Genes
#> 1        FN1
#> 2 14-3-3ZETA
#> 3       A1I3
#> 4        A2M
#> 5       AARS
#> 6       ABAT
#>                                                                                                 biological_process
#> 1 GO:0003181(atrioventricular valve morphogenesis);GO:0003128(heart field specification);GO:0001756(somitogenesis)
#> 2                                                                                                             <NA>
#> 3                                                                                                             <NA>
#> 4                                                                                                             <NA>
#> 5                                                                           GO:0006419(alanyl-tRNA aminoacylation)
#> 6                                                            GO:0009448(gamma-aminobutyric acid metabolic process)
#>                 cellular_component
#> 1 GO:0005576(extracellular region)
#> 2                             <NA>
#> 3  GO:0005615(extracellular space)
#> 4  GO:0005615(extracellular space)
#> 5            GO:0005737(cytoplasm)
#> 6                             <NA>
#>                                                                                                       molecular_function
#> 1                                                                                                                   <NA>
#> 2                                                                            GO:0019904(protein domain specific binding)
#> 3                                                                           GO:0004866(endopeptidase inhibitor activity)
#> 4                                                                           GO:0004866(endopeptidase inhibitor activity)
#> 5 GO:0004813(alanine-tRNA ligase activity);GO:0005524(ATP binding);GO:0000049(tRNA binding);GO:0008270(zinc ion binding)
#> 6                              GO:0003867(4-aminobutyrate transaminase activity);GO:0030170(pyridoxal phosphate binding)
#>                                                                                                                                                                                                                                kegg_pathway
#> 1                                                                                                   ko04810(Regulation of actin cytoskeleton);ko04510(Focal adhesion);ko04151(PI3K-Akt signaling pathway);ko04512(ECM-receptor interaction)
#> 2 ko04110(Cell cycle);ko04114(Oocyte meiosis);ko04390(Hippo signaling pathway);ko04391(Hippo signaling pathway -fly);ko04013(MAPK signaling pathway - fly);ko04151(PI3K-Akt signaling pathway);ko04212(Longevity regulating pathway - worm)
#> 3                                                                                                                                                                                              ko04610(Complement and coagulation cascades)
#> 4                                                                                                                                                                                              ko04610(Complement and coagulation cascades)
#> 5                                                                                                                                                                                                      ko00970(Aminoacyl-tRNA biosynthesis)
#> 6         ko00250(Alanine, aspartate and glutamate metabolism);ko00280(Valine, leucine and isoleucine degradation);ko00650(Butanoate metabolism);ko00640(Propanoate metabolism);ko00410(beta-Alanine metabolism);ko04727(GABAergic synapse)

# 3. Default parameters
go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1])
#> Warning: Expected 2 pieces. Additional pieces discarded in 82 rows [714, 928, 1523,
#> 1543, 2042, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2200, 2202, 2203, 2205,
#> 2206, 2207, 2208, 2552, ...].


# 4. Set padjust_method = "BH"
go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH")
#> Warning: Expected 2 pieces. Additional pieces discarded in 82 rows [714, 928, 1523,
#> 1543, 2042, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2200, 2202, 2203, 2205,
#> 2206, 2207, 2208, 2552, ...].


# 5. Set max_go_item = 10
go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], max_go_item = 10)
#> Warning: Expected 2 pieces. Additional pieces discarded in 82 rows [714, 928, 1523,
#> 1543, 2042, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2200, 2202, 2203, 2205,
#> 2206, 2207, 2208, 2552, ...].


# 6. Set strip_fill = "#008888"
go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], strip_fill = "#008888")
#> Warning: Expected 2 pieces. Additional pieces discarded in 82 rows [714, 928, 1523,
#> 1543, 2042, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2200, 2202, 2203, 2205,
#> 2206, 2207, 2208, 2552, ...].


# 7. Set sci_fill_color = "Sci_JAMA"
go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], sci_fill_color = "Sci_JAMA")
#> Warning: Expected 2 pieces. Additional pieces discarded in 82 rows [714, 928, 1523,
#> 1543, 2042, 2191, 2192, 2193, 2194, 2195, 2197, 2198, 2200, 2202, 2203, 2205,
#> 2206, 2207, 2208, 2552, ...].