TSNE analysis for analyzing and visualizing TSNE algorithm.
Source:R/tsne_analysis.R
tsne_analysis.Rd
TSNE analysis for analyzing and visualizing TSNE algorithm.
Arguments
- sample_gene
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples).
- group_sample
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups).
- seed
Numeric: set seed for robust result. Default: 1.
- tsne_dims
Numeric: TSNE dimensionality number. Default: 2.
Examples
# 1. Library TOmicsVis package
library(TOmicsVis)
# 2. Use example dataset
data(gene_expression)
head(gene_expression)
#> Genes CT_1 CT_2 CT_3 LT20_1 LT20_2 LT20_3 LT15_1 LT15_2
#> 1 transcript_0 655.78 631.08 669.89 654.21 402.56 447.09 510.08 442.22
#> 2 transcript_1 92.72 112.26 150.30 88.35 76.35 94.55 120.24 80.89
#> 3 transcript_10 21.74 31.11 22.58 15.09 13.67 13.24 12.48 7.53
#> 4 transcript_100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#> 5 transcript_1000 0.00 14.15 36.01 0.00 0.00 193.59 208.45 0.00
#> 6 transcript_10000 89.18 158.04 86.28 82.97 117.78 102.24 129.61 112.73
#> LT15_3 LT12_1 LT12_2 LT12_3 LT12_6_1 LT12_6_2 LT12_6_3
#> 1 399.82 483.30 437.89 444.06 405.43 416.63 464.75
#> 2 73.94 96.25 82.62 85.48 65.12 61.94 73.44
#> 3 13.35 11.16 11.36 6.96 7.82 4.01 10.02
#> 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#> 5 232.40 148.58 0.00 181.61 0.02 12.18 0.00
#> 6 85.70 80.89 124.11 115.25 113.87 107.69 119.83
data(samples_groups)
head(samples_groups)
#> Samples Groups
#> 1 CT_1 CT
#> 2 CT_2 CT
#> 3 CT_3 CT
#> 4 LT20_1 LT20
#> 5 LT20_2 LT20
#> 6 LT20_3 LT20
# 3. Default parameters
res <- tsne_analysis(gene_expression, samples_groups)
head(res)
#> TSNE1 TSNE2
#> 1 -67.41252 -16.61397
#> 2 43.08349 -34.02654
#> 3 123.32273 54.14358
#> 4 -42.52065 -31.30027
#> 5 94.98790 48.97986
#> 6 -23.90637 -22.26434
# 4. Set tsne_dims = 3
res <- tsne_analysis(gene_expression, samples_groups, tsne_dims = 3)
head(res)
#> TSNE1 TSNE2 TSNE3
#> 1 29.250264 -15.141306 -40.375437
#> 2 -47.013447 -13.546879 8.119351
#> 3 11.078193 -7.835674 99.084440
#> 4 4.104299 -10.244024 -45.251763
#> 5 12.249987 -20.984402 76.807522
#> 6 -5.797345 -0.517750 -33.130167